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Hamiltonian dynamics can be formulated entirely in terms of a Poisson manifold, 
that is, one for which the algebra of smooth functions is a Poisson algebra. The 
latter is a commutative associative algebra A together with a skew-symmetric 
bracket which is a derivation on A. It is shown that a Poisson algebra can be 
generalized by replacing A by algebras which do not necessarily commute. These 
allow for algebraic generalizations of Harniltonian dynamics in both classical 
and quantum forms. Particular examples are models of classical and quantum 
electrons. 

1. I N T R O D U C T I O N  

Poisson  a lgebras  a rose  f rom the genera l i za t ion  o f  symplec t ic  man i fo lds  
to Poisson  a lgebras  ( B h a s k a r a  and  Viswanath ,  1988; L i b e r m a n n  and  M a d e ,  
1987; G u i l l e m i n  and  Sternberg ,  1980). I ndeed ,  a Poisson m a n i f o l d  can be  
def ined  to be  a m a n i f o l d  M for which  the a lgebra  of  smoo th  funct ions  on 
M has the  s t ructure  o f  a Poisson  a lgebra .  

The  bas i c  s t ructures  o f  H a m i l t o n i a n  dynamics  are  the H a m i l t o n i a n  
vec tor  fields and  the a s soc ia t ed  equa t ions  govern ing  the flow of  these  vec tor  
fields, n a m e l y  H a m i l t o n ' s  equat ions .  A l t h o u g h  it is usual  to define these  
cons t ruc t ions  on a symplec t i c  man i fo ld ,  the  la t ter  is not  essent ial .  It  is 
poss ib le  to fo rmula te  these  s t ructures  ent i re ly  in terms o f  Poisson  man i fo ld s  
(Olver ,  1986) and  consequen t ly  in terms o f  the  a s soc ia t ed  Poisson  algebra~ 

In this  p a p e r  the no t i on  o f  a Poisson a lgebra  is genera l i zed  by  rep lac ing  
the c o m m u t a t i v e  a lgebra  o f  funct ions  def ined  on a m a n i f o l d  with cer ta in  
a lgebras  which  are not  necessar i ly  commuta t ive .  Such a p r o c e d u r e  fits in 
with the  bas ic  idea  o f  n o n c o m m u t a t i v e  geomet ry  (Connes ,  1986; Dubo i s -  
Viole t te  et al., 1989). These  a lgebras  a l low for the fo rmula t ion  of  an ana log  
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of Hamiltonian mechanics entirely in algebraic terms. In this way it is 
possible to' reveal an essential unity among different dynamical structures 
such as classical and quantum dynamics in general, and in particular models 
of classical electrons and their quantum counterparts. 

The organization of  this work is as follows. In Section 2 we present a 
brief description of Poisson algebras and their relationship with classical 
Hamiltonian dynamics. Generalized Poisson algebras and Hamiltonian 
dynamical structures are introduced in Section 3. In Section 4 algebraic 
analogs of classical and quantum dynamics are discussed. Algebraic dynami- 
cal models of classical electrons are considered in Section 5, while in Section 
6 quantum equivalents of these models are discussed. 

2. POISSON ALGEBRAS AND HAMILTONIAN DYNAMICS 

A Poisson algebra can be defined as follows: Let A be a commutative 
associative algebra over [~ with unit. A Poisson bracket {,) on A is a map: 
A x A ~ A satisfying 

(a) bilinearity (2.1) 

(b) { f  g } = - { g , f }  (2.2) 

(c) { f  gh} = { f  g}h + g{ f  h} (2.3) 
i.e., the bracket is a derivation on A 

(d) {{f g}, h}+{{g, h},f}+{{h,f},  g } = 0  (2.4) 
f o r f  g, h 6 A  

This algebra is denoted by the pair (A, {,}). We can relate this to 
Hamiltonian dynamics. Let M be a manifold and let A represent the 
commutative algebra of C ~ functions on M. Then M and the Poisson 
algebra (A, {,}) constitute a Poisson manifold. A Hamiltonian vector field 
associated with a function h 6 A is given by Vh where 

Vh(g) = {g, h} (2.5) 

for g ~ A. In the case where M is the space R 2" it is always possible to find 
canonical coordinates (qt, pj), j = 1, 2 , . . . ,  n, such that for any f g e A, 

{ f g } =  ~ (0_~j Og Of O~qj) (2.6) 
i=1 Opt Opt 

The integral curves (qJ(t),pt(t)) of a Hamiltonian vector field Vh satisfy 
Hamilton's equations 

dq__j = {qt, h} = Oh dpi Oh 
dt Opi' -~ =  {pj' h} = Oq j (2.7) 
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and it follows for any f ~  A which is not an explicit function of t that 

d~= { f  hi (2.8) 

3. G E N E R A L I Z E D  P O I S S O N  A L G E B R A S  A N D  H A M I L T O N I A N  
D Y N A M I C A L  STRUCTURES 

We shall now generalize the (commutative) Poisson algebra to the case 
where A is replaced by an associative, but not necessarily commutative, 
algebra s~ and denote the generalized Poisson algebra by (~ ,  {,}). Let 

x~ = (qj, pj, z , )  

where j = 1, 2 . . . .  , n;/x = 1, 2 , . . . ,  m; J = 1, 2 . . . .  ,2n + m; and assume that 
xj are generators of ar 

We can now construct the equivalent of Hamiltonian dynamics on 
(sg, {,}). Let Der(~/) denote the space of  all derivations on ar and let 

Oq: Opj Oz~ 

be a subset of  D e r ( ~ )  satisfying 

Oqj = 6{ = Opj . Oqj = 0 = Opj 

Oqk Opk ' Opk Oqk 
(3.1) 

Oq~ _ OPJ=o=OZ.=Oz  . 

Oz. Oz. Oqj Opj 

while the properties of  Oz.~Oz,. are as yet unspecified. These derivations 
will be referred to as the canonical derivations. 

A Poisson bracket is defined on ~ as a map: ~ x s~ ~ sg which satisfies 
all the properties (2.1)-(2.4) with A replaced by ~/. Then the pair (sO, {,}) 
is the Poisson algebra defined on sO. 

The algebraic equivalent of a Hamiltonian vector field is the Hamil-  
tonian derivation VI, e D e r ( ~ )  associated with h ~ ~ ,  satisfying 

Vt, (xj) = {xj, h} 

such that 

oh oh oh 
= - - ;  Vh(pj) = - - - ;  Vh (z~.) = - -  (3.2) 

Vl,(qj) OPi Oq i Oz~. 

In particular, 

(qj, qk} = {pj, Pk} = 0; {qj, Pk} =/~ik (3.3) 
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while {z, ,  z~} are as yet unspecif ied.  We shall  now show that  for  any f c  

Vh(f )  ={ f ,  h} (3.4) 

Since Vh ~ Der(sr  it fol lows that  

Vh(x~xK ) = Vh(x~ )x~, + x~V~(x~ ) 

= {xj, h}xK +xj{xK, h} 

= {xjxK, h} by (2.3) 

N o w  f ~  ~ / c o n s i s t s  o f  sums and products  o f  terms such as xjxK and so it 
is sufficient to show that  if  (3.4) holds for  two elements  f l , f 2 ~  s~, then it 
holds  for  f l+f2  and f l f2.  The first fol lows since Vh is linear, while the 
second fol lows f rom the der ivat ion p roper ty  o f  Vh. 

In ana logy  with H a m i l t o n ' s  equat ions ,  we define a Hamiltonian dynami- 
cal structure on (sO, {,}). We first require  the a lgebraic  equivalent  o f  a curve 
on a man i fo ld  and define this in the fol lowing way. I f  f e  ~/, let q~f be a 
cont inuous  m a p  f rom an interval  I c R + ~ ~ such that  if  ti ~ I, then 

~Df: t~ f ( t~ )  ~ ~ (3.5) 

The  set {f(t i)} for  all t~ ~ I will be deno ted  by  f ( t )  and we shall refer  to 
f ( t )  as a function of  t. 

Next  in t roduce  a m a p  h , : f ( t )  ~ f ( t ) ,  where  h ~ ~ ,  which we shall call 
an infinitesimal t-canonical transformation. Let e, 6 , . . . ~ R  be such that  
p roduc t s  o f  the order  o f  two or greater  can be neglected.  Let tj be an e lement  
of  I and  assume  that  (t~ + e ) ~ I, so that  f ( t i ) ,  f (  t~ + e) ~ f ( t ) .  Then  we define 

h~(f( t,) ) = f ( t , )  + e{ f (  ti), h} (3.6) 

It  can then be shown that:  

(a) h~[h~f(t,)] = h~+~f(ti). 
(b) hof( t , )=f( t , ) .  
(c) he preserves  the relat ions (3.3). 

This m a p  al lows us to in t roduce  the not ion o f  a t-derivative via 

d__f= lim h~[f(t)] - f ( t )  = { f ( t ) ,  h} (3.7) 
dt ~o  e 

Hamiltonian dynamical structure is defined on (~r {,}) if h c ~r exists 
such that  

dxj r 
- -  = ~txj, h} (3.8) 
dt 
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and h is then called a Hamiltonian. This result can be extended to 

df= {f, h} (3.9) 
dt 

for any f e  M not containing t explicitly. 

4. ALGEBRAIC CLASSICAL AND QUANTUM DYNAMICS 

An algebraic model of classical Hamiltonian dynamics can be formu- 
lated in the case where M is a commutative algebra over ~ with generators 

xj=(q~,pj), j = l , . . . , n ,  J = l  . . . .  ,2n (4.1) 

and a unit element 1 ~ N. 
Denote this algebra by C. Define the canonical derivations to be 

(a/Oqj, o/opj) satisfying (3.1); then a Poisson bracket on C is given by 

{ f  g}c = Y. of Og Of Og (4.2) 
:=1 Opj Opa OCly/ 

for f, g ~ C. Every element of  C is assumed to be a function of t as defined 
in Section 3 and a Hamiltonian dynamical structure on C can be constructed 
on the Poisson algebra (C, (,}c) as defined above. 

If s~ is replaced by an nth Weyl algebra ~ (McConnell and Robson, 
1987), then we obtain an algebraic version of quantum dynamics. By 
quantum dynamics we refer only to the Heisenberg picture of quantum 
mechanics restricted specifically to Heisenberg's equation of motion. The 
algebra ~ over C has generators •j = (c~j,/~) which satisfy the relations 

[ / ; , , / ~ ]  = 0 = [# , ,  #y]; [# , ,  ~6,] = ~,yl (4.3) 

where I is the unit element. Let f be an element of ~kff and define the 
derivation O/0~ j by 

o f  = lim f (  ~j + el, fij) - f (  ~, ~) (4.4) 
O q  i e ~ o  E 

and 0/O/~ i similarly. The commutator [,] satisfies all the properties (2.1)-(2.4) 
and so qualifies as a Poisson bracket. The pair ( #g', [,]) form a noncommuta- 
tive Poisson algebra. It has been shown (Sherry, 1989b) that from the 
definition of  (4.4) we get 

Of [4y, f ]  (4.5) 
• = 
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If  every element of ~r is a function of t and if/~ is a Hamiltonian, then 

dt~j d/~ [/~,/~] (4.6) 
a t  = [4j, f;]; d--7: 

and, in general, if f is not an explicit function of t, we obtain 

d f  [37,/~] (4.7) 
dt 

which is the equivalent of Heisenberg's equation. 

5. P O I S S O N  ALGEBRAS A N D  D Y N A M I C A L  M O D E L S  
OF CLASSICAL ELECTRONS 

In previous work (Sherry, 1989a-c) algebraic models of classical elec- 
trons were introduced. In this section we reformulate these in terms of 
generalized Poisson algebras. In these models the notion of classical spin 
is provided by bivectors of suitable Grassmann algebras. 

Although other models of classical (or pseudoclassical) spinning parti- 
cles based on Grassmann algebras exist (Berezin and Marinov, 1977; Casal- 
buoni, 1976a, b; Barducci et al., 1976; Gomis et al., 1955), none of these 
provide physical interpretations of the Grassmann variables. The formalism 
presented here allows for direct physical and geometrical interpretations 
formally similar to equivalent variables in quantum theory. 

The relevant Poisson algebra is defined on the tensor product of a 
Grassmann algebra and C denoted by 

~ = ~ 3 |  

Here ~ has as generators 

xj = (qj, pj, sj) (5.1) 

where 

while 

and in addition 

[q~, p/] = [qj, qk] = [Pj, Pk] = 0  (5.2) 

[qj, Ski = 0 = [pj, Sk] (5.4) 

The sj are generators of a Grassmann algebra ~ over R, with unit element 
1 ~ R. Here ~d is a Z2 graded, or superalgebra, of the form 

= ~o |  (g, (5.5) 

SjSk + SkS i = 0 (5.3) 



Generalized Poisson Algebras 1121 

such that if 

a i r ' i ,  b t~  ~ then aibj~C~i+t where i , j , i + j = O ,  1 

and 

a,b t = ( - 1 )  ( ' + t ) bta, (5.6) 

In particular, if ao, bo ~ go, then aobo = boao and such elements are said 
to be homogeneous  of degree zero, denoted by (ao)=-0 = (bo). Elements 
a l ,  bl e ~ satisfy a~bl = -b~a~ and we write (al)  = (b~) = 1. 

Now since every element of  C commutes with every element of  ~, we 
can write 

D = Do| 

where every element of  C is homogeneous of  degree zero. Associated with 
the generators of  (5.1) we define canonical derivations (0/0%, o/Opt, O/ast) 

satisfying (3.1) with z,  identified with s t and also OsJOsk = 6tk. The following 
additional results also hold: 

0 0 0 0 
- 0  (5.7) 

Osj OSk OSk OSj 

O 0 
sj + st = ( 5 . 8 )  

and 

OSj Sk," " " Sk,,, = t=l ( - -1)k ' - t  6k,iSk, " " " Sk," " " Sg,,, (5.9) 

We require some further notation. Let F, A ~ ~ be of  the form 

r Skl " ~ " S k , , ,  1 <-- k 1 < k 2 �9 �9 �9 ~ k m <- rt 

F = l o r  

unit element 1 ~ c~ 

Then F n A denotes the set of  sj is common to both F and A. As a result, 
since any element F ~  @ can be written in the form Ff, where f ~  C, this 
notation can be extended to D as well. 

A Poisson bracket {,}~ is defined on D as follows: 

k OFOG 

Opt aqj  / 

if  at least one of  F, G ~ Do and  F c~ G = ;g 

{F, G}~ --- (F, G)  = g~k(--1)(e)+' OFOG (5.11) 
Os t OSk 

if at least one of F, G is e Do and F c~ G # 

[ F , G ] = F G - G F  if F, G e D 1  (5.12) 
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The signature of  gjk is specified in the particular cases which follow and 
the summation convention applies. Then it can be shown that {,}3 is a 
Poisson bracket satisfying properties (2.1)-(2.4). It has been shown (Sherry, 
1989a-c) that the bracket i,) is a super-Poisson bracket with the following 
properties: 

(i) It is bilinear. 
(ii) i f  g) = - ( -1)( f ) (g) ig ,  f ) .  

(iii) (f, gh) = iF, g)h + (-1)~/)~g)g(f h). 
(iv) (--1)~r)~h)if ig, h))+ (-1)tg)(r)ig , (h , f ) )  

+ (--1)(h)(g)ih, if ,  g)) = 0, where f g, h c <~. 

In accordance with definition (3.2), a Hamiltonian vector field VH 
associated with an element H c ~ satisfies 

Vn(qi) {qj, H}  =OH aH 
= - - ;  V , (p / )  ={pj, H } =  - - -  

api aqi 
(5.13) 

aH 
V, ( s j )  = {sj, H}  - 

asj 

In order to formulate models of classical electrons, we need to introduce 
the notion of "classical spin" in analogy with the quantum concept. We 
follow Dirac (1958) in defining spin to be a variable sj , j  = 1, 2, 3, with the 
following properties: 

(a) {SJ, Sk} = $1, where j, k, I form a cyclic permutation of 1, 2, 3. 
(b) In the case of a free particle, or a particle in a central force field, 

angular momentum is not conserved, but the sum of  angular 
momentum and spin is a conserved quantity. 

In addition, we shall show that classical spin can be quantized to yield the 
equivalent of  "quantum" spin 1/2. 

We first consider the nonrelativistic case. All the elements of @ are 
assumed to be functions of t and define glk  = t~jk, j, k = 1, 2, 3. The elements 
of  the Grassmann algebra ~3 can be given a physical interpretation in the 
following way. The super-Poisson bracket of the generators Si has the form 

( sj, sk ) = ajk 

as well as being symmetric, so if the s i are interpreted as vectors of a 
three-dimensional Euclidean space E3, then this bracket satisfies the condi- 
tions of  a metric; the s~ form an orthonormal basis of  E3 relative to this metric. 

It has been shown (Sherry, 1989c) that bivectors of the type Sj = -sk&, 
where J, k, l form a cyclic permutation of 1, 2, 3, satisfy condition (a) of 
spin. In addition, the s i transform like vectors under SO(3) since 

{Si, sk} = st (5.14) 
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That the Sj also satisfy the condition (b) is shown by considering an analog 
of  spin-orbit  coupling of  a particle in a central field with the relevant term 
in the Hamiltonian of the form 

3 

H = f ( r )  Y~ SjL; (5.15) 
j - !  

where r is a constant distance from the source of the field and Lj = qkPl --qlPk 
are the equivalents of the components of  the angular momentum in N. It 
can be shown that d L J d t  ~ O, while ( d / d t ) ( L j  + Sj) = O. 

In the relativistic case, g~k, j, k = 0 ,  1, 2, 3, has signature 2, and we 
assume that all elements of @ are functions of the parameter z which 
represents the proper time. Let S~ =-sr  where a, /3, 3/ form a cyclic 
permutation of  1, 2, 3. In a similar fashion to the nonrelativistic case, the 
bracket (sj, sk) has the properties of  the Minkowski metric, while 

{S~, Sl3 } = S~ (5.16) 

so that the S~ satisfy condition (a) of the classical spin. The sj can be 
interpreted as an orthonormal basis relative to gjk. 

The Hamiltonian for the free relativistic classical electron is chosen to 
be 

H = (mc)-lgJkp,sk (5.17) 

and it has been shown (Sherry, 1989a) that if L~t~ = q~Pt~ - qt~P, represents 
the algebraic equivalent of the angular momentum tensor, then ( d / d z ) -  
(L,~t3) ~ 0, while (d/dt)(L,~r + S~) = 0, so that condition (b) is also satisfied. 

6. ALGEBRAIC MODELS OF ELECTRONS 

The Poisson algebra in the quantum case is (Q, {,}o) where Q is the 
Clifford-Weyl algebra. Q is the direct product 

O = ~V| c~ (6.1) 

where ~V is an nth Weyl algebra and ~ is an n-dimensional Clifford algebra. 
Q is an associative algebra defined over C with generators s = (~j,/~i, ~), 
where ~ are the generators of c~, satisfying 

[~,  qk] = [/~,/~k] = 0 = [~, elk] = [g,, ilk] (6.2) 

[qi, Pk] = gjk = �89 + gk~) (6.3) 

The Poisson bracket on Q is the commutator [,], so that if F, G 6 Q, then 

{t3, 6}  ~ = [/~, 6 ]  (6.4) 
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A Hamiltonian derivation V~ associated with/- t  c Q satisfies 

V,~(~) = {~., H}Q OH 
- 0 /~  ( 6 . 5 )  

aM 
V~(/~) = {/~,/~r}Q = - - - -  (6.6) 

Vf~(~) = {~, H}Q = - ~  (6.7) 

and these also serve to define the derivations 0/0~,  0/0/~, and 0/0~-. 
In the case of  the nonrelativistic electron, Q is generated by qj, pj, sj, 

where j = 1, 2, 3 and gjk= 6jk. If the ~ are interpreted as an orthonormal 
basis of E3, then c~ is the complex Pauli algebra and the ~ can be represented 
by the Pauli matrices. All elements of Q are assumed to be functions of t 
and a Hamiltonian structure is defined by a Hami l ton ian /4  ~ Q satisfying 

~ _ =  { q , d ~  . t7i}0, d~d_T = {~., IYi}o, d~_at {5,/-)}Q (6.8) 

Spin of  1/2 is defined to be an element ~ ~ Q satisfying properties (a) and 
(b) of Section 5. Suitable candidates for the spin variables are bivectors 

= �89 where s, k, 1 form a cyclic permutation of 1, 2, 3. First, 

{ Sj, Sk } o = l[ s'lSk, ~ l ]  = �89 ffk~ = Sl (6.9) 

thus satisfying condition (a). 
Note that 

so that g~ transform like vectors under SO(3). 
Second, we consider the quantum version of the spin-orbit coupling 

Hamiltonian of  the electron in a central field of (5.15) given by 
3 

.i = ! 

Here s is the j th  component  of the orbital angular momentum. Then, just 
as in the classical case, we obtain 

ds:j 
- [L j ,  H ]  dt 
=f(r)(gks 0 

where j, k, l form a cyclic permutation of  1, 2, 3, while 
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but where 

7+7=0 
thus satisfying condition (b). 

In the relativistic case, gjk (j, k = 0 ,  1,2,3) has signature 2 and the 
parameter is the proper time r. The quantized version of the Hamiltonian 
of (5.20) becomes H = (g.~k/rnc)p/~k, representing the free electron. 

The angular momentum is given by L~ = c~r v -~v/~r while spin has 
components S~ = �89 where a, fl, y form a cyclic permutation of 1, 2, 3. 

First, as in the nonrelativistic case, 

so that the condition (a) of spin is satisfied. Then 

ds {s n}o = !  (~g -~g)  # 0 
dr me 

while 

{ I?} 
dr 

1 

m c  

so that ( d / d r ) ( s  + S ~ ) =  0 and condition (b) is satisfied. 
It was shown (Sherry, 1989a) that in the particular realization given by 

h 0 

where ~:, fi/, and yj are the position, momentum, and Dirac y-operators, 
the Hamiltonian H = (g/k/mc)fijyk can be transformed into 

ftD = c y ~  + mc2y ~ 

which is the Hamiltonian in the covariant form of Dirac's theory of the 
electron. 

Quantization is defined to be the map ~b given by 

O: ~ - ~ Q  
. 0 + g :k  o 

~b: qj ~ qj, PJ ~ ~ - O ' -  s~ ~ ~ = sj OSk 
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and it is straightforward to show that these elements satisfy the relations 
(6.2) and (6.3). 
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